Investigation of Size-Dependent Vibration Behavior of Piezoelectric Composite Nanobeams Embedded in an Elastic Foundation Considering Flexoelectricity Effects

نویسندگان

چکیده

This article investigates the size dependent on piezoelectrically layered perforated nanobeams embedded in an elastic foundation considering material Poisson’s ratio and flexoelectricity effects. The composite beam is composed of a regularly squared cut-out core with two piezoelectric face sheet layers. An analytical geometrical model adopted to obtain equivalent variables core. To capture effect, three-dimensional continuum mechanics express kinematics are kinetics relations framework Euler–Bernoulli theory (EBBT). nonlocal strain gradient utilized incorporate size-dependent electromechanical Hamilton principle applied derive nonclassical dynamic equation motion impact. A closed form solution for resonant frequencies obtained. Numerical results explored impacts characteristics behavior nanobeams. Obtained revealed significant effects mechanical, electrical, parameters developed procedure obtained helpful many industrial purposes engineering applications, such as micro/nano-electromechanical systems (MEMS) NEMS.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bending Response of Nanobeams Resting on Elastic Foundation

In the present study, the finite element method is developed for the static analysis of nano-beams under the Winkler foundation and the uniform load. The small scale effect along with Eringen's nonlocal elasticity theory is taken into account. The governing equations are derived based on the minimum potential energy principle. Galerkin weighted residual method is used to obtain the finite eleme...

متن کامل

Buckling Analysis of Embedded Nanosize FG Beams Based on a Refined Hyperbolic Shear Deformation Theory

In this study, the mechanical buckling response of refined hyperbolic shear deformable (FG) functionally graded nanobeams embedded in an elastic foundation is investigated based on the refined hyperbolic shear deformation theory. Material properties of the FG nanobeam change continuously in the thickness direction based on the power-law model. To capture small size effects, Eringen’s nonlocal e...

متن کامل

Nonlocal Vibration Behavior of a Viscoelastic SLGS Embedded on Visco- Pasternak Foundation Under Magnetic Field

This paper is concerned with the surface and small scale effects on transverse vibration of a viscoelastic single-layered graphene sheet (SLGS) subjected to an in-plane magnetic field. The SLGS is surrounded by an elastic medium which is simulated as Visco-Pasternak foundation. In order to investigate the small scale effects, the nonlocal elasticity theory is employed due to its simplicity and ...

متن کامل

investigation of effective parameters on the rigidity of light composite diaphragms (psscb) by fem

در این رساله با معرفی سقف های psscb متشکل از ترکیب ورق های فولادی ذوزنقه ای و تخته های سیمانی الیافی به عنوان سقف های پیش ساخته (سازگار با سیستم سازه ای قاب های فولادی سبک) به بررسی پارامترهای موثر بر صلبیت سقف، پرداخته می شود. در تحقیق حاضر ابتدا به مدل سازی دو نمونه سقف آزمایش شده، به روش اجزاء محدود با استفاده از نرم افزار تحلیلی abaqus ver 6.10 پرداخته شده است. نمونه های ساخته شده تحت اعما...

Vibration Analysis of Size-Dependent Piezoelectric Nanobeam Under Magneto-Electrical Field

The damping vibration characteristics of magneto-electro-viscoelastic (MEV) nanobeam resting on viscoelastic foundation based on nonlocal strain gradient elasticity theory (NSGT) is studied in this article. For this purpose, by considering the effects of Winkler-Pasternak, the viscoelastic medium consists of linear and viscous layers. with respect to the displacement field in accordance with th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11051180